大数据Hadoop系列之Hadoop分布式集群部署

一、部署规划

1、部署环境

  • 各部署单元的软件部署情况如下:


二、环境准备

1、修改主机名

[root@VM1 ~]# vim /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=master60

[root@VM2 ~]# vim /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=slave61

[root@VM3 ~]# vim /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=slave62

[root@VM4 ~]# vim /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=slave63


2、配置网络映射

  • 所有主机执行

# vim /etc/hosts

192.168.9.60 master60

192.168.9.61 slave61

192.168.9.62 slave62

192.168.9.63 slave63

3、关闭防火墙

  • 所有主机执行

# service iptables stop && chkconfig iptables off && chkconfig --list | grep iptables


4、禁用selinux

  • 所有主机执行

# vi /etc/selinux/config

SELINUX=disabled


5、禁用IPv6

  • 所有主机执行

# echo " " >> /etc/modprobe.d/dist.conf

# echo "alias net-pf-10 off" >> /etc/modprobe.d/dist.conf

# echo "alias ipv6 off" >> /etc/modprobe.d/dist.conf


6、重启

  • 所有主机执行

# reboot


7、配置ssh无秘钥登录

  • 主机master60上执行

7.1、生产公钥和私钥

# ssh-keygen

7.2、拷贝公钥给目标服务器

# ssh-copy-id -i master60

# ssh-copy-id -i slave61

# ssh-copy-id -i slave62

# ssh-copy-id -i slave63


8、集群时间同步

8.1、启动ntpd服务

  • 所有主机执行

# service ntpd start && chkconfig ntpd on && chkconfig --list | grep ntpd

8.2、更新时间

  • 主机master60上执行

# ntpdate -u ntp.sjtu.edu.cn

8.3、将系统时间同步给本机硬件时间

  • 主机master60上执行

# hwclock --localtime

# hwclock --localtime -w

8.4、硬件时间自动同步给系统时间

  • 主机master60上执行

# vi /etc/sysconfig/ntpd

SYNC_HWCLOCK=yes

8.5、系统时间自动更新硬件时间

  • 主机master60上执行

# vi /etc/sysconfig/ntpdate

SYNC_HWCLOCK=yes

8.6、时间进行更新并同步至集群其它主机

  • 主机master60上执行

# ntpdate -u slave61

# ntpdate -u slave62

# ntpdate -u slave63

8.7、重启ntpd服务

  • 所有主机执行

# service ntpd restart && service crond restart


9、设置用户的可打开最大文件数及进程数

  • 所有主机执行

# vi /etc/security/limits.conf

# soft 软指标 ,给警告

# hard 硬指标 ,直接停止

* soft nofile 32728

* hard nofile 1024567

* soft nproc 65535

* hard nproc unlimited

* soft memlock unlimited

* hard memlock unlimited

10、创建一个Hadoop专用的普通用户

  • 所有主机执行

10.1、创建hadoop用户并修改密码

# useradd hadoop

# passwd hadoop

10.2、创建hadoop组,并将hadoop用户加入hadoop组

# groupadd hadoop

# usermod -a -G hadoop hadoop

10.3、创建工作目录

# mkdir /apps && cd /apps && mkdir lib logs run sh sharedstorage svr

# chown -R hadoop:hadoop /apps/*


###################### 后续操作转hadoop用户 ######################

三、Hadoop集群部署

1、JDK安装

1.1、创建JDK工作目录

  • 所有主机执行

$ mkdir -p /apps/svr/java/

1.2、上传解压JDK软件并拷贝至集群其它主机

  • 主机master60上执行

$ tar -zxvf ~/jdk-8u172-linux-x64.tar.gz -C /apps/svr/java/

$ scp -r /apps/svr/java/jdk1.8.0_172/ slave61:/apps/svr/java/

$ scp -r /apps/svr/java/jdk1.8.0_172/ slave62:/apps/svr/java/

$ scp -r /apps/svr/java/jdk1.8.0_172/ slave63:/apps/svr/java/

1.3、配置JDK环境变量

  • 所有主机执行

$ vim ~/.bash_profile

# JAVA_HOME

export JAVA_HOME=/apps/svr/java/jdk1.8.0_172

export CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar

export PATH=$PATH:$JAVA_HOME/bin

1.4、立即生效

  • 所有主机执行

$ source ~/.bash_profile


2、部署Hadoop

2.1、部署准备

  • 主机master60上执行

a、创建hadoop工作目录,上传解压hadoop软件

$ mkdir -p /apps/svr/hadoop/
$ cd /apps/svr/hadoop/ 
$ mkdir conf data1 data2 lib logs run

$ mkdir -p /apps/svr/hadoop/data1/dfs/dn 
$ mkdir -p /apps/svr/hadoop/data2/dfs/dn 
$ mkdir -p /apps/svr/hadoop/data1/dfs/nn 
$ mkdir -p /apps/svr/hadoop/data2/dfs/nn

$ tar -zxvf ~/hadoop-2.7.3.tar.gz -C /apps/svr/hadoop/

b、配置hadoop-env.sh

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/hadoop-env.sh

export JAVA_HOME=/apps/svr/java/jdk1.8.0_172/


2.2、部署HDFS

  • 主机master60上执行

a. 配置core-site.xml

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/core-site.xml

<configuration>
	<!-- 设置NameNode运行的主机 -->
	<property>
		<name>fs.defaultFS</name>
		<value>hdfs://master60:9000</value>
	</property>

	<!-- hadoop文件系统依赖的基础配置 -->
	<property>
		<name>hadoop.tmp.dir</name>
		<value>/apps/svr/hadoop/run/</value>
	</property>

	<!-- hadoop的用户代理机制 -->
	<property>
		<name>hadoop.proxyuser.hadoop.hosts</name>
		<value>*</value>
	</property>
	<property>
		<name>hadoop.proxyuser.hadoop.groups</name>
		<value>*</value>
	</property>

</configuration>

b. 配置hdfs-site.xml

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/hdfs-site.xml

<configuration>
	<!-- datanode数据保存路径 -->
	<property>
		<name>dfs.datanode.data.dir</name>
		<value>/apps/svr/hadoop/data1/dfs/dn,/apps/svr/hadoop/data2/dfs/dn</value>
	</property>

	<!-- namenode所使用的元数据保存路径 -->
	<property>
		<name>dfs.namenode.name.dir</name>
		<value>/apps/svr/hadoop/data1/dfs/nn,/apps/svr/hadoop/data2/dfs/nn</value>
	</property>

	<!-- hdfs数据块的复制份数 -->
	<property>
		<name>dfs.replication</name>
		<value>3</value>
	</property>

	<!-- dfs权限是否打开 -->
	<property>
		<name>dfs.permissions</name>
		<value>true</value>
	</property>

</configuration>

c. 配置slaves,设置DataNode运行的主机

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/slaves

slave61

slave62

slave63


2.3、部署YARN

  • 主机master60上执行

a. 配置yarn-site.xml

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/yarn-site.xml

<configuration>
	<!-- ResourceManager对客户端暴露的地址 -->
	<property>
		<name>yarn.resourcemanager.address</name>
		<value>master60:8032</value>
	</property>

	<!-- ResourceManager对ApplicationMaster暴露的访问地址 -->
	<property>
		<name>yarn.resourcemanager.scheduler.address</name>
		<value>master60:8030</value>
	</property>

	<!-- ResourceManager对NodeManager暴露的地址 -->
	<property>
		<name>yarn.resourcemanager.resource-tracker.address</name>
		<value>master60:8031</value>
	</property>

	<!-- ResourceManager对管理员暴露的访问地址 -->
	<property>
		<name>yarn.resourcemanager.admin.address</name>
		<value>master60:8033</value>
	</property>

	<!-- ResourceManager对外web ui地址 -->
	<property>
		<name>yarn.resourcemanager.webapp.address</name>
		<value>master60:8038</value>
	</property>

	<!-- mapreduce中间需要经过shuffle过程 -->
	<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
	</property>

</configuration>

b. 配置mapred-site.xml

$ vim /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/mapred-site.xml

<configuration>
    <!-- mapreduce运行在yarn平台上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

</configuration>

2.4、拷贝hadoop

  • 主机master60上执行

$ scp -r /apps/svr/hadoop/ slave61:/apps/svr/

$ scp -r /apps/svr/hadoop/ slave62:/apps/svr/

$ scp -r /apps/svr/hadoop/ slave63:/apps/svr/


2.5、配置hadoop环境变量

  • 所有主机执行

$ vim ~/.bash_profile

# HADOOP_HOME

export HADOOP_HOME=/apps/svr/hadoop/hadoop-2.7.3

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/tools/lib/*

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
  • 立即生效

$ source ~/.bash_profile


2.6、启动测试hadoop

  • 主机master60上执行

a. 格式化

$ hadoop namenode -format

b. 启动

$ start-dfs.sh

$ start-yarn.sh

c. 检查启动结果

$ yarn node -list

d. WEB UI验证

HDFS : http://192.168.9.60:50070

YARN : http://192.168.9.60:8038


2.7、历史服务器(88主机)

  • 主机master62上执行

a. 配置mapred-site.xml

$ cd /apps/svr/hadoop/hadoop-2.7.3/etc/hadoop/

$ vim mapred-site.xml

<configuration>
	<property>
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
	</property>
	
	<property>
		<name>mapreduce.jobhistory.address</name>
		<value>192.168.9.62:10020</value>
	</property>
	
	<property>
		<name>mapreduce.jobhistory.webapp.address</name>
		<value>192.168.9.62:19888</value>
	</property>

	<property>
		<name>mapreduce.jobhistory.done-dir</name>
		<value>${yarn.app.mapreduce.am.staging-dir}/history/done</value>
	</property>

	<property>
		<name>mapreduce.jobhistory.intermediate-done-dir</name>
		<value>${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate</value>
	</property>

	<property>
		<name>yarn.app.mapreduce.am.staging-dir</name>
		<value>/tmp/hadoop-yarn/staging</value>
	</property>

</configuration>

b. 启动历史服务器

$ mr-jobhistory-daemon.sh start historyserver

C. WEB UI验证

JobHistory : http://192.168.9.62:19888

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页